A CLASS OF NEW BI-INVARIANT METRICS ON THE HAMILTONIAN DIFFEOMORPHISM GROUPS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvatures of Sobolev Metrics on Diffeomorphism Groups

Many conservative partial differential equations correspond to geodesic equations on groups of diffeomorphisms. Stability of their solutions can be studied by examining sectional curvature of these groups: negative curvature in all sections implies exponential growth of perturbations and hence suggests instability, while positive curvature suggests stability. In the first part of the paper we s...

متن کامل

Hamiltonian Reduction of Diffeomorphism Invariant Field Theories

For a variety of diffeomorphism–invariant field theories describing hypersurface motions (such as relativistic M -branes in space-time dimension M + 2) we perform a Hamiltonian reduction “at level 0”, showing that a simple algebraic function of the normal velocity is canonically conjugate to the shape Σ of the hypersurface. The Hamiltonian dependence on Σ is solely via the domain of integration...

متن کامل

Bi-invariant Metrics on the Group of Symplectomorphisms

This paper studies the extension of the Hofer metric and general Finsler metrics on the Hamiltonian symplectomorphism group Ham(M,ω) to the identity component Symp0(M,ω) of the symplectomorphism group. In particular, we prove that the Hofer metric on Ham(M,ω) does not extend to a bi-invariant metric on Symp0(M,ω) for many symplectic manifolds. We also show that for the torus T2n with the standa...

متن کامل

Conformal Holonomy of Bi-invariant Metrics

We discuss in this paper the conformal geometry of bi-invariant metrics on compact semisimple Lie groups. For this purpose we develop a conformal Cartan calculus adapted to this problem. In particular, we derive an explicit formula for the holonomy algebra of the normal conformal Cartan connection of a bi-invariant metric. As an example, we apply this calculus to the group SO(4). Its conformal ...

متن کامل

Flat Bi-Hamiltonian Structures and Invariant Densities

A bi-Hamiltonian structure is a pair of Poisson structures P , Q which are compatible, meaning that any linear combination αP+βQ is again a Poisson structure. A biHamiltonian structure (P,Q) is called flat if P and Q can be simultaneously brought to a constant form in a neighborhood of a generic point. We prove that a generic biHamiltonian structure (P,Q) on an odd-dimensional manifold is flat ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2015

ISSN: 1027-5487

DOI: 10.11650/tjm.19.2015.5098